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Analytical approximations to conditional distribution functions

By THoMAs J. DiCiccio, MICHAEL A. MARTIN
AND G. ALASTAIR YOUNG

SuMMARY. Conditional inference plays a central role in statistics, but determination of
relevant conditional distributions is often difficult. We develop analytical procedures that
are accurate and easy to apply for approximating conditional distribution functions. For

a continuous random vector X = (X1,..., X?), we estimate conditional tail probabilities
pr(Y! < al|lY? =d?,...,Y* = aF), kE<p,

where Y* = ¢'(X!,... X?) (i =1,...,k) and ¢',..., ¢* are smooth functions of X. Previ-
ous approaches have dealt with the cases where the variable whose conditional distribution
is sought is a linear function of means, and where there are p — 1 conditioning variables.
However, in many practical circumstances the statistic of interest is a nonlinear function of
means and it is advantageous to condition on a lower-dimensional ancillary statistic. Our
procedure first involves approximating the marginal density function fy1,_ys (¥2,...,y%)
for Y1,...,Y*, by an approach of Phillips (1983) and Tierney, Kass and Kadane (1989).
An accurate approximation to the required conditional probability is then obtained by
applying a marginal tail probability approximation of DiCiccio and Martin (1991) to the
conditional density of Y! given Y?,...,Y* which satisfies

iy, (@Y =a%,. . YE=ad*) « fyr ya(y', %, ..., a").

Our method is illustrated in several examples, including one which uses a saddlepoint
approximation for the density of X, and the method is applied for conditional bootstrap

inference.

Some key words: Ancillary statistic; Conditional bootstrap; Laplace’s method; Marginal
density; Saddlepoint approximation; Tail probability approximation.




1. Introduction

Conditional distributions play a key role in many inference problems, largely through
the use of the conditionality principle and notions such as ancillarity. Unfortunately, it
is often difficult or impossible to compute exact conditional di‘stributions, and standard
approximation methods often fail to work or are difficult to adapt to the situation at hand.
For example, Edgeworth expansions can yield negative probability estimates in the tails of
a distribution, and saddlepoint methods based on cumulant generating functions are only

easily applied when the variables of interest are means.

Skovgaard (1987) investigated the use of saddlepoint methods in the case of a bi-
variate mean to develop analytical approximations to the conditional distribution of one
mean given the other. He extended his method to the case of p means, approximating the
conditional distribution of a linear function of the means given a (p — 1)-dimensional linear
function of them. Wang (1991) extended Skovgaard’s results further to include the case
of approximating the conditional distribution of a mean given p — 1 nonlinear functions
of the means. Davison and Hinkley (1988) applied Skovgaard’s approach in a conditional
bootstrap context. They extended Skovgaard’s results to include the conditional distribu-
tion of certain functions of the means given a (p — 1)-dimensional linear function of them,
where the functions in question lead to statistics which are solutions of linear estimating
equations. The techniques of Skovgaard and Wang have several elements in common that
may limit their applicability. First, because they are based on saddlepoint approximations,
their methods require knowledge of the cumulant generating function of the entire random
vector of interest. Second, their technique restricts the variable whose conditional distri-
bution is sought to be a linear function of means, or at least to be a function of means
identified with a linear estimating equation. This restriction can be quite severe in prac-
tice. Finally, and most importantly, the number of conditioning variables is necessarily
p — 1. However, in many cases of practical interest, an ancillary exists that is of lower

dimension than p — 1, and interest centers on distributions conditional on that ancillary.

In this paper, we develop an analytical approximation to conditional tail probabilities
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for a smooth function of a random vector X = (X?!,..., XP) given k—1 other smooth func-
tions of X, where k£ < p. The vector X is not restricted to a vector of means; we assume
only that its joint density function is of the form cb(z)exp{¢(z)}. Also, the variable whose
conditional distribution is sought may be a smooth, non-linear function of X, giving our
method considerable generality. Moreover, our method allows the dimension of the condi-
tioning variable to be less than p — 1, so that a lower-dimensional ancillary statistic may
be conditioned on if it exists. Our technique produces accurate approximate conditional
tail probabilities, and is based on applying DiCiccio and Martin’s (1991) tail probability
approximation to a marginal density approximation given by Phillips (1983) and Ticrney,
Kass and Kadane (1989), by noting that the required conditional density is proportional to
the marginal density for fixed values of the conditioning variables. A secondary, theoretical
contribution of the paper is to show that the approaches of Phillips (1983) and Tierney,

Kass and Kadane (1989) for developing marginal density approximations are equivalent.

An important feature of our approximation is that it avoids costly numerical integra-
tion. An obvious alternative approach to use of our method is numerical integration of
a renormalized version of the conditional density approximation that arises in developing
our technique. The first obstacle to implementing this approach is that renormalization
requires the computation of a second numerical integral. However, both numerical inte-
gration steps are practically infeasible because each density function evaluation requires a
potentially costly constrained maximization step. In contrast, application of our method

requires only four function evaluations.

Section 2 of the paper describes our theoretical results. In section 3, we discuss
computational aspects of our method and provide a formal algorithm for its use. Examples
of the use of our method are given in Section 4, including an application to the conditional

bootstrap.

2. Conditional Tail Probability Approximation

Consider a continuous random vector X = (X!,..., XP) having probability density




function of the form
fx(z) = cb(z)exp{¥(z)}, z = (z',...,zP),

and let # = (2!,...,2?) be the point maximizing ¢(z), and suppose that X —Z is O,,(n'%)
as n — oo, where n is sample size. For each fixed z, assume that ¢(z) and its partial

derivatives are O(n). We are interested in approximating conditional tail probabilities
pr(Y! < a' | Y2 =d%,...,YF =ad*), k <p,

where a2, ..., a* are fixed constants and Y* = ¢(X?!,...,X?) (: = 1,..., k) for functions
g',...,g* which are assumed to have continuous gradients that do not vanish in an n"i-
neighbourhood of Z.

In order to study the conditional distribution of Y'! given Y2,...,Y*, we first consider
an approximation to the marginal density of ¥!,..., Y*. Two approaches to estimating
this marginal density are given by Phillips (1983) and Tierney, Kass and Kadane (1989).
Both approaches utilize Laplace’s method of approximating integrals to avoid the need
for high-dimensional integration, and it is shown here that they yield the same marginal
density approximation; see the Appendix. We will use elements of both approaches to
describe our method, so we now briefly describe each approach.

Phillips (1983) assumes a 1-1 transformation
Y = (V... Y?) = {g}(X",...,XP),...,gP(X,...,XP)}

of X, where the variables of interest are Y!,...,Y*, and the functions g**!,...,gP are
smooth and have non-zero gradients in an n~%-neighbourhood of . Let J{z(y)} denote
the Jacobian of this transformation. Then the probability density function of Y is of the

form
fr(y) = cb(y)exp{l(y)}, v=("...,9")

where §(y) = b{z(y)}/det[J {z(y)}] and &(y) = ¢{z(y)}. The marginaldensityof Y?,...,Y*

1s then

fri, vy yb) = c/_ao /_oo b(y)exp{¥(y)} dy**'...dy"

oo




_ ST Joo My exp{&(y)} dytt . dyP
oo 20 b(y)exp{l(y)} dy? ...dyp

(1)

Let § be the value of y maxim.zing #(y), and let § = §(y!,...,y*) be the value of y
maximizing #(y) subject to the first k components of y being held fixed at the values
vyt Let Li(y) = 8l(y)/dy', Lij(y) = 8°&(y)/By'dy’ (i,j = 1,...,p). Applying
Laplace’s method to the numerator and denominator of (1), an approximation to the

marginal density of Y!,..., V¥ is

det{3)} ] D o) -, @

fY‘,...,Y"(yla ee ayk) ~ (27r)_k/2 [det{ﬂ'(g)} B(,g)

where (y) is the p x p matrix whose (7,j)th element is —¢;;(y), and Q'(y) is the (p —
k) x (p — k) submatrix of Q(y) corresponding to pairs (i,j) where :,j =k +1,...,p. An
apparent problem with approximation (2) is that it requires specification of p — k new
functions g**1,...,g? of X, the choice of which may affect the accuracy of (2).

Tierney, Kass and Kadane (1989) provide a formula for the approximate marginal
density of Y!,...,Y* that does not require specification of g**!,...,gP. To describe
their formula, we first need additional notation. Let # be the value of z maximizing ¢(z)
subject to the constraints g'(z!,...,2?) = y!,.--,g%(z!,...,zP) = y*, and let H(z) be

the Lagrangian for this constrained maximization,
H(z) = l(z) + Aa{g®(z) - y°},

where Ao = Ao(y',...,¥*) (@ = 1,...,k) and the usual summation convention applies
whereby summation is assumed over indices appearing as both a subscript and a su-
perscript. Let ¢;(z) = 8¢(z)/0z*, 4ij(z) = 0%4(z)/0z*dz’, H;j(z) = O°H(z)/0z'dz/,
9¢(z) = 99°(z)/0z*, gi(z) = 8%9*(2)/02'Bz7 (i,j = 1,...,p; & = 1,...,k) denote the
partial derivatives of ¢, H and g, respectively. Define the p x p matrices A(z) = {~£'(z)},
the inverse of the matrix whose (¢, j)th element is —¢;;(z), and A(z) = {-H"(z)}, the
inverse of the matrix whose (i, j)th element is —H;;(z) (3,5 = 1,...,p), and the k x k ma-

trix ©(z) whose (a, 3)th element is —H‘j(z:)gf’(z)gf(x) (a,8 =1,...,k). Then, Tierney,




Kass and Kadane’s approximation to the marginal density of Y!,...,Y* is

-, . % i
Pttty o) 2 | e B S et - 2. (9)

Proposition 1. Approximations (2) and (3) to the marginal density of Y,...,Y* are
equivalent.

Proposition 1 is proved in the Appendix. In particular, it is shown there that

[det{sz(a)}r@(g):[ det{A(#)) ]%b(:z) @
det{@(@)}] g ~ [det{A@)}det{O@)]] HE)’

and )
o) — Ug) = &z) - U2). (5)

Our rationale in what follows is that
fY‘|Y2 ..... Y"(yl | Y2 = a2v e 1Yk = a'k) X fY‘,...,Y"(yl,a2a R sak),

so that we may write

frvys, ey Y2 =%, YVE = ab) o B (y" ) exp{€7(y")), (6)

for suitably defined functions ¢* and b*. We apply the DiCiccio and Martin (1991) tail
probability formula to obtain approximations to conditional tail probabilities pr(¥Y! <
al | Y2 = @?,...,Y* = g*). Fix the values of y2,...,y* in the preceding discussion at

2 ...,a*, respectively. Then § = j(y!,a?,...,a) is a function

their conditioned values a
of y! alone, and is the value of y rﬁa.ximizing {(y) subject to the first k components of y
being fixed at the values y!,a?,...,a*, respectively. Analogously, # = #(y!,a?,...,a%) is
a function of y!, and is the value of = ma.xirﬁizing ¢(z) subject to the constraints gl.(z) =
y!,9%(z) = a%,...,9%(z) = a*. Then b*(y!) in (2) is given by
,,.(y,)=< det{Q(9)) )ﬁ{ﬁ(y‘,tfl---,a")}
det['{§(y*,a?,...,a*)}] 5(9)
b

_ ( det[A{Z(y!,a?,...,a")}] )é {#(y},a?,...,a")}
det{A(z)}det[0{Z(y1, a2, ..., a*)}] b2) ’

(M)




and £*(y!) is given by
ey') = Hi(y', % ..., a")} - U9) = {3(y*, d%, ..., d")) — U2);

see (4) and (5), respectively. DiCiccio and Martin’s (1991) tail probability approximation

for densities of the form (6) is

1 {9} b(a)
e 1Y2=a .. Y =a5) el
(vt ot [V et v =ty 60 o) [+ e @)
where §' maximizes £*(y"), r = sgn(a' —§")[2{€*(g") - €*(a')}]%, £+ (y!) = de*(y*)/dy?,
@ (y1) = d20*(y")/d(y")? denote the first two derivatives of £*(y'), and & and ¢ denote
standard normal distribution and density functions, respectively. A simpler approximation

to the required conditional probability is to just use the leading term of (8); that is,
pr(Y! <a!' |Y?2=a%,...,Y* = a*) = &(r). (9)

This alternative approximation is much easier to compute than the full approximation
(8), but it is also significantly less accurate in our experience. Typically, the error in
approximation (8) is of order O(n~3/2), while the error in approximation (9) is of order
O(n—%).

We now outline the expression of the various components of tail probability approx-
imation (8) in terms of the original functions b,b,¢, and £. To this end, note that i
maximizes #(y) subject to y2,...,y* being fixed at their conditioned values a2,...,a*, and
let Z be the value of z maximizing ¢(z) subject to g%(z) = a?,...,¢%(z) = a*. Then

§! = ¢!(z) and z = #(5',d?,...,a*). Hence,
r = sg{a’ — ¢'(2)}(2[e(2) - £{z(d",...,a")})*.

Next, observe from (7) that

b*(a) (det[ix{f(al,...,a*)}]det{e(f)})%b{f(al,...,a*)} (10)

b*(3')  \det{A(z)}det[0{Z(a’,...,a")}] b(z) ’
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which is readily computed using values of ¢;; and the Lagrange multipliers Aq(a?,...,a*)
(@ =1,...,k) obtained in finding #(a,...,a*).
Now, to compute £*Y(y!), it is convenient to work with the definition of £*(y?!)

involving £. Then,

] d o~
eV = =[li", o, ..., a")]
dy
d - N N
= dyl [e{yl’GZ’...’ak,yk+l(yl’a2’”.,ak),”.,yp(yl’a2,”.,ak)}]

=0 {g(y",d?,...,a") )iy, d%, ... ah),

where §i(y?, ..., y*) = 85'/0y* and the index : runs from 1 to p. However, §%(y!,a?, ..., a*)
equals 1 for « = 1 and zero for @ = 2,...,k. Moreover, £;{j(y*,a?,...,a*)} = 0 for
i =k+1,...,psince §(y',a?,...,a*) maximizes £ subject to the first k components of y

being held fixed at the values y',a?,...,a*, respectively. Hence,

eOhy = 4{Hy', %, ..., "))

Now, the Lagrangian for maximizing #(y) subject to the first k¥ components of y being held
fixed is H(y) = #(y) + Aay®, where the index a runs from 1 to k. Note that the Lagrange
multipliers Aq(y?,@%,...,a%) (@ = 1,..., k) are the same as those for maximizing #(z) sub-
ject to g'(z) = y*,¢%(z) = @%,...,¢%(z) = a*. A Lagrange multiplier argument involving
H(y) yields Aa(y',a?,...,a*) = —Z{i(y*,a?%,...,a*)} (a = 1,...,k). In particular, we
have

eV = —n(y', ... dk). (11)

The second derivative £*2(y!) is harder to compute, and there does not seem to be
a closed form expression for it in general. However, it is readily approximated numerically
using the formula
Hz(y + 6,a?,...,a%)} — 20{z(y*,a?,...,a*)} + €{F(y" - 6,a?,...,a%)}

82 ’
(12)

D (y') ~
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for a small value of é. It is convenient in this instance to work with the definition of £*(y')
involving #(z). Further details concerning computation of (12) are given in Section 3. Tail
probability approximation (8) may then be computed.

An important special case of our approximation (8) occurs when k = p; that is,
when the number of conditioning variables is p — 1. This is the only case considered by
Skovgaard (1987) and Wang (1991). In that case, the marginalization step to approximate
the marginal density of Y}, ..., Y* is not required and the function ? and its derivatives are
easily specified. Therefore the conditional density fyxlyz'm,yp(yl | Y2 =a?,...,YP =aP)
is proportional to b(y!, a?,...,a?)exp{f(y',a?,...,a?)}. Consequently, approximation (8)
assumes the particularly simple form

pr(Y! <a' [Y? =d?,...,Y? = aP)

~ 1 {_Zu(gl’a?’”.’ap)}% B(alv---sap)
] Iy o S TN R &

(13)

where r = sgn(a! — §!)[2{2(5",d?,...,a?) = ¥(a’,...,a?)}]? and §' maximizes {(y) subject

to y2,...,y? being held fixed at their conditioned values, aZ,...,a”, respectively.

3. Computational Details

In this section, we outline sume computational details for computing (8). Our aim is to
provide a formal algorithm for the method. Assume that the conditioning values a?,...,a
are specified, and we wish to approximate pr(Y! < a! | Y2 = a?,...,Y* = a*) for various
values of a!.

Step 1: Find Z, the value of z which maximizes ¢(z) subject to the constraints

gl(x) = al""’gk(x) = ak'

Typically, this step involves the solution of a system of
(p+k) non-linear equations in as many unknowns to obtain # and the Lagrange multipliers
AM(al,...,ak),..., A(a!,...,a*) needed for later steps. Of course, the system of equations
referred to here is linear in the A;’s, and so a little algebra usually results in the reduction
of the problem to that of solving a system of p nonlinear equations in p unknowns.

Step 2: Find Z, the value of r maximizing ¢(z) subject to g?(z) = a?,...,¢%(z) = a*.

This step typically requires solution of (p+k—1) non-linear equations in as many unknowns.
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Step 3: Form r = sgn{a! — ¢*(z)}[2{€(Z) — €(£)}]*, and hence approximation (9) to
the required conditional distribution function.

Step 4: Calculation of the factor b*(a')/b™(7*) follows readily from (10). This step
requires calculation of the derivatives ¢;;(z) and ¢fj(z) (a = 1,...,k). These derivatives
" are readily calculated either analytically or numerically.

Step 5: The first derivative £*(})(al) is given by —A;(al,...,a*) from Step 1.
Step 6: The second derivative E‘(”(g.‘) is calculated numerically using (12). In

2

order to calculate (12), the quantities #(§' + 6,a2,...,a*) and #(g' — §,d%,...,a*) are

needed. In the former case, #(§! + 6, a2, ..., a*) is that value of  maximizing ¢(z) subject

2,...,¢%() = a*, and so may be found by

to the constraints ¢'(z) = §! + 6,¢%(z) = a
solving the system of equations from Step 1 except with a® replaced by ' + é. Similarly,
#(7' —6,a?,...,a*) may be found by solving the same system of equations with a’ replaced
by 7! — §. Approximation (8) may then be computed using (10), (11) and (12).

In implementation of the algorithm described above we have used the packages Min-

pack and NAG to solve the required systems of equations.

4. Examples
4.1. Conditional inference for a normal mean when the coeficient of variation is known.
Let Wi,...,W, be a sample from a normal distribution N(p,cz,u"’), g > 0, with
known coefficient of variation ¢ > 0. The mean p is the parameter of interest. For
simplicity, let c=1. Let T =W and U = Y. (Wi — W)?2. The statistic Z = ¢*(T\U) =
niT/(U + nT?)} is ancillary; see Hinkley (1977) and Lehmann (1991). Lehmann (1991,
p.549) gives the conditional deasity of V = ¢ (T,U) = (U + nT?)} given Z = z:

friz(v ] Z = 2) = ku="v" exp{—4(u~"v = n}2)?). (14)

In this case, the number of conditioning variables, k, is equal to p — 1, so the simpler
approximation (13) may be used to approximate conditional tail probabilities pr(V < v |
Z = z). Of course, in this instance, tail probabilities can be computed easily through

numerical integration of the exact density (14), so this example serves merely to illustrate




10

the accuracy of our method. Suppose the true value of u is 1. Then, the joint density
of T and U is proportional to u{®~3/2exp{—4n(t — 1)> — Ju}. We choose b(t,u) = 1
and £(t,u) = —3n(t — 1)? — Ju + 3(n — 3)log u here, rather than the more obvious choice
bt,u) = u(m=3/2 g(t,u) = —in(t — 1)2 — Lu, because in the latter case 9¢(t,u)/0u
never vanishes, meaning that (f,4) falls on the boundary of possible (¢,u) values. Now,
b(v,z) = 2n—3v? and {(v, z) = zvn? — Fn— v+ (n—3)logv+ 2(n —3)log(1 — 2?). The

constrained maximizing point & = #(z) of £(v, z) subject to z being fixed at its conditioned

value may be computed algebraically here, so approximation (13) becomes
(82 +n —3)%°
(zvn% —v24+n—3)5% )

where r = sgn(v — 9)[2{€(%, z) — £(v,2)}]% and & = 1zn3{l + {1+ 427 2n"(n - 3)}%).

pr(V <v|Z =z) = ®(r) +¢(r){% +

Table 1 reports approximations pr(V < v | Z = z) when n = 10 and z = 0.75 for
various values of v. In this instance, our approximation is very close to exact values based
on numerical integration of (14). The simple approximation (9) tends to perform poorly.

Wang (1991) considers tail probabilities for V2 = n=1 3 W2 given Z = 2. His method,
which is based on a saddlepoint approximation to the joint distribution of several means,
is not valid in our case as it can only be used to find the conditional distribution of a linear

function of means, here the mean of W? itself, given (p— 1) smooth functions of the means.

4.2. Saddlepoint approximations and an application to the conditional bootstrap.

Skovgaard (1987) and Wang (1991) consider the special case where X = (X,...,X?)
is a vector of means and the density fx(z) is approximated by a saddlepoint approxi-
mation. In that setting, consider n observations of a p-dimensional random vector W =
(W1,...,W,). Denote the cumulant generating function of W by K(Th,...,T,). Then the
usual saddlepoint approximation to the joint densify of X = (Wy,... ,W,,) is proportional
to

P
Fx(=', ..., zP) x |A(z, ... ,:z:”)|‘% exp[n{K(Ty,...,Tp) - Z Tiz'}),
1=1

Py

whe.  he saddlepoint ( T y- .+ Ip) satisfies

Kr(Ty,...,T)=2' (i=1,...,p)
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Kt = 0K(Ty,...,T;)/0T;, and A = {K1,1;(Ti,...,T,)} is the k x k matrix of second-
order partial derivatives K1,1;(T1,...,Tp) = PK(T,...,T,)/0T:0T; (2,5 = 1,...,p) eval-
vated at T3,.. ., T,,. General reviews of saddlepoint methods are given by Barndorff-Nielsen

and Cox (1979) and Reid (1988).

Approximation (12) can be used to approximate conditional tail probabilities pr(¥Y! <
a' | Y2 =a?,...,Y* = a*) where Y! = ¢} (X),...,Y* = ¢g¥(X) are smooth functions of
the means. It is convenient in this instance to take b(z!,...,z7) = |A@z!,. .. ,zP)|~% and
Uz,...,2°) = n{K(Ty,...,T,) = 3.0, Tiz'}. Wang’s (1991) method is only valid when
the function ¢! is linear. Tierney, Kass and Kadane (1989) give an approximate marginal

density formula for Y!,...,Y*, from which application of (12) is straightforward.

We are particularly interested in applying (12) to estimate tail probabilities for the
conditional bootstrap. Monte Carlo simulation to estimate conditional bootstrap distribu-
tion functions is extremely tedious, requiring careful stratification of bootstrap resamples
according as to whether bootstrap versions of the conditioned variables approximately sat-
isfy the original conditioning or not; see Hinkley and Schechtman (1987) and Davison and
Hinkley (1988). In particular, a difficulty arises in deciding how close resamples need to
come to the original conditioning criteria to be retained in the simulation. However, recent
methods based on saddlepoint approximations have been proposed to approximate boot-
strap distribution functions which avoid the need for resampling; see Davison and Hinkley
(1988), Danieis and Young (1991), and DiCiccio, Martin and Young (1990). Analyti-
cal approximations such as these are particularly important in the conditional bootstrap
context because they avoid the stratification problem discussed above. Davison and Hink-
ley (1988) consider conditional bootstrap inference for the ratio § = E(V)/E(U), where
(Ui, Vi) (i = 1,...,n) are pairs with common distribution function F. They suggest a
suitable model for studying the conditional distribution of T = V/U given Uy,...,Up is
v; = Ou; + u%¢;, where ¢; are independent errors with zero mean and variance o2. For
simplicity, let & = 1. Then Var(V | uy,...,un) = o?c where ¢ = (3 u?)/(T ui)?. The

aim is to approximate the conditional bootstrap distribution of T* = V' /U given the
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-

bootstrap ancillary 4* = (3 Ur?)/(3SUr)?, where (U?,V*) (i = 1,...,n) is a resample
drawn at random with replacement from (U;,V;) (i = 1,...,n). Davison and Hinkley find

approximations to
pr(V‘/U‘ S t lZI = al,Z; = (12) = pr(v‘ - tU' S 0 'Z; = al,Z; = 02),

where 4; = n-! S"U! and Z; = n~!' U2, by applying Skovgaard’s (1987) method.
They condition on both :4-; and Z; reasoning that, since for their data A* is highly cor-
related with A; and 4,, “redundancy of a conditioning variable is harmless”. Note that
Skovgaard’s method requires two conditioning variables in this case, because here p = 3
since (X!, X2, X3) = (v',vt,-(ﬁ’-'). However, approximation (12) allows us to approxi-
mate conditional tail probabilities pr(V" /U~ <t | A* = a) directly.

Table 2 reports conditional tail probability approximations for V' /U for the data set
of size 25 reported by Davison and Hinkley (1988, Table 3). We have repeated Davison and
Hinkley’s experiment with two conditioning variables ZI and :4_; using approximation (13),
and we have also obtained approximations to pr(V" /U < t | A* = a) using (12) which
could not be obtained using their method. In both cases, the joint cumulant generating

function of (U?,V*,Uz?) (i = 1,...,n) given (U, V;) (i = 1,...,n) is

KT, T2, T3) = log{n'l ZCXP(TIUi + LV + T3Ui2)}'

i=1
In the latter case, we consider the conditional distribution of Y = ¢}(X!, X2, X3) =
X?/X" given Y2 = g%(X', X%, X%) = n=1X3/(X")%. In each case, the derivatives of K
and ¢° are easily calculated algebraically or numerically and the constrained maximization
steps were carried out using Minpack’s hybrd subroutine. In order to obtain the “exact”
probabilities for the first case, resamples from the simulation experiments were stratified
by requiring each bootstrap ancillary to be no more than one quarter of its standard
deviation from its observed data value. This requirement meant that only about 10% of

the bootstrap resamples drawn were actually retained in estimating the exact probability.

In the second case, resamples for which the bootstrap ancillary was no more than one tenth
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of its standard deviation from its observed data value were retained, resulting in a 10%

retention rate again. The results reported in Table 2 are very encouraging. In particular, in

the latter case when there is only one conditioning variable, approximation (12) performs

very well, especially in the upper tail of the distribution. The simpler approximation

(9) fails badly in this case, particularly in the center of the distribution. In the case of

two conditioning variables, approximation (9) and approximation (13) both perform well,

especially in the lower tail.

Appendix
Proof of Proposition 1

First note that since #(y) = £{z(y)}, £(y) = z(§) and £ = z(§), we have

exp{€(%) ~ €(2)} = exp[e{#(y)} — e{=(§)}] = exp{¥(§) — 4()}-
Next, observe that

5(§) _ b{z(§)}det(I{z(9)}] _ d(z) det{J(§)}
b(g)  b{z(9)}det[J{=(®)}]  b(z) det{J(§)}
Consequently, to show that (2) and (3) coincide, it remains to show

det{A(z)} _ _ det{R3)}det{J(@)
det{A(2)}det{B2)]  det{()}det (J(3))*

Note that since £(z) = £{y(z)}, it follows that

ti(z) = B{y(2)}gi(z)  (i=1,...,p),

where the index k runs from 1 to p, and

8ii(z) = lu{y()}ei (2)9;(2) + Bely(@)}efi(z)  (,i=1,...,p),

where the indices k, ! run from 1 to p. Now, since £;(2) = 0 and Zx(§) =0 (3,k = 1,

we have
—4ii(2) = ~Tu(§)gf (2)g5(2),

and hence, inverting and taking determinants on both sides,

det{A(2)} = [det{Q2(§)}det{J(9)}*]7".

(A1)

(A.2)

"'9p))

(A.3)
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Recall that § maximizes £(y) subject to the first k¥ components of y being fixed. Hence
2:(§) =0, fori' =k +1,...,p. Consequently, from (A.2) it follows that

0ij(2) = Lu(¥)9i (2)9}(%) + La(§)95(E)
= Zu(§)95(2)g5(2) — Aagfi(2),

where the index a runs from 1 to k, and A, (@ = 1,...,k) are the Lagrange multipliers
for the constrained maximization step to obtain . Note as well that A, (a =1,...,k) are

also the Lagrange multipliers for finding Z. Thus,
8a(§)9f (2)95(%) = £ij(2) + Xag(Z) = Hij(%).
Matrix inversion on both sides yields
eH(g) = HY ()i (2)g5(2), (44)

and hence

[det{Q(§)}]" = det{A(Z)}det{J()}*. (A.5)

Equation (A.4) implies that O(%) is the k x k submatrix in the upper left corner of the
inverse of (). Therefore, by the formula for the determinant of a partitioned inverse
(Draper and Smith, 1981, p.127),

det{Q71(5)} = det{O(2)}det[{'(3)} ). (46)

Hence, from (A.5) and (A.6) it follows that

det{A(%)} _ 1
det{0(2)} ~ det{Q'(7)}det{J(#)}*"

Combining (A.3) and (A.6), (A.1) obtains, and the proof is complete.
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Table 1

Conditional tail probabilities pr(V < v | Z = 0.75) for Example 4.1, n = 10.

16

v Exact Approximation (9) Approximation (13)
1.5 0.0000 0.0003 0.0000
2.0 0.0005 0.0036 0.0004
2.5 0.0057 0.0234 0.0048
3.0 0.0331 0.0910 0.0300
3.5 0.1190 0.2394 0.1125
4.0 0.2920 0.4595 0.2828
4.5 0.5264 0.6878 0.5174
5.0 0.7471 0.8575 0.7409
9.9 0.8949 0.9494 0.8918
6.0 0.9664 0.9862 0.9653
6.5 0.9918 0.9971 0.9915
7.0 0.9985 0.9995 0.9984
7.5 0.9998 0.9999 0.9998
8.0 1.0000 1.0000 1.000n
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Approximations to conditional probabilities pr(V*/U* < ¢ | A} = 147.9, A5 = 43120)
and pr(V*/U* < t | A* = 0.07885) for n = 25 pairs of Example 4.2. The conditioned
values chosen are the values of A;, A, and A from the data.

Two conditioning variables

One conditioning variable

t Exact! (9) (13) Exact! (9) (12)
7.8 0.0001  0.0001 0.0001 0.0003  0.0008 0.0004
7.9 0.0002  0.0002 0.0002 0.0006  0.0016 0.0009
8.0 0.0008  0.0007 0.0007 0.0013  0.0033 0.0020
8.1 0.0020  0.0020 0.0020 0.0029  0.0066 0.0042
8.2 0.0050  0.0051 0.0051 0.0061  0.0126 0.0083
8.3 0.0115  0.0118 0.0117 0.0125  0.0231 0.0157
8.4 0.0247  0.0252 0.0249 0.0243  0.0405 0.0289
8.5 0.0488  0.0497 0.0489 0.0450  0.0684 0.0511
8.6 0.0888  0.0905 0.0892 0.0794  0.1108 0.0868
8.7 0.1497  0.1528 0.1506 0.1328  0.1715 0.1411
8.8 0.2352  0.2394 0.2363 0.2107  0.2534 0.2187
8.9 0.3432  0.3492 0.3452 0.3155  0.3565 0.3219
9.0 0.4664  0.4752 0.4709 0.4433  0.4763 0.4456
9.1 0.5948  0.6059 0.6018 0.5835  0.6031 0.5863
9.2 0.7151  0.7276 0.7243 0.7185  0.7241 0.7188
9.3 0.8157  0.8287 0.8266 0.8297  0.8264 0.8298
9.4 0.8920  0.9032 0.9021 0.9089  0.9023 0.9092
9.5 0.9429  0.9514 0.9511 0.9573  0.9513 0.9576
9.6 0.9727  0.9786 0.9786 0.9828  0.9786 0.9827
9.7 0.9883  0.9918 0.9918 0.9936  0.9918 0.9938
9.8 0.9955  0.9973 0.9973 0.9980  0.9972 0.9981
9.9 0.9984  0.9992 0.9992 0.9995  0.9992 0.9995
10.0 0.9995  0.9998 0.9998 0.9999  0.9998 0.9999
10.1 0.9999  1.0000 1.0000 1.0000  0.9999 1.0000
10.2 1.0000 1.0000

1 “Exact” probabilities based on 500,000 reté.ined bootstrap resamples.
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